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Abstract

A current popular approach to representing time in
Bayesian belief networks is through Dynamic Bayesian
Networks (DBNs) (Dean & Kanazawa 1989). DBNs
connect sequences of entire Bayes networks, each
representing a situation at a snapshot in time. We
present an alternative method for incorporating time
into Bayesian belief networks that utilizes abstractions
of temporal representation. This method maintains the
principled Bayesian approach to reasoning under un-
certainly, providing explicit representation of sequence
and potentially complex temporal relationships, while
also decreasing overall network complexity compared
to DBNs.

Introduction
Time is a critical element for reasoning in many problem
domains. A war-gaming system must analyze and predict
an enemy’s tactics and intentions as they unfold in behavior
over the duration of a battle. An autonomous agent explor-
ing its world needs to discover temporal relationships be-
tween its actions and changes in its environment. In fact,
the core of any planning system involves reasoning about
temporal sequence. Often such reasoning takes place at nu-
merous levels of abstraction above temporal snapshots. For
example, a robot tasked with understanding the affects of its
actions in the service of obstacle avoidance should not rea-
son over only the sequence of instantaneous temporal repre-
sentations: “at timet my motors started forward,” “at time
t + k I hit a wall.” Instead, it needs to represent the fact that
“hitting a wall was preceded by moving forward.” This lat-
ter representation not only makes the relationship between
events explicit, it seems to be closer to the way humans rep-
resent their world as well.

At the same time, real world domains inherently involve
uncertainty. Sensors are noisy and we don’t have access to
all of the states of the world (including the mental states of
others, or even the outcomes of our own actions). Bayesian
belief networks (Pearl 2000) provide a principled framework
for reasoning about uncertainty. But to handle uncertainty,
we not only need to reason about uncertain states, we must
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also consider how those states change over time. A cur-
rent popular approach to incorporating temporal representa-
tion into Bayesian belief networks will be described below;
unfortunately the representation necessitates only reasoning
between instantaneous moments.

A great deal of progress has been made in formally rep-
resenting temporal relationships. One approach isfluents,
which is based on Allen’s temporal relations (Allen 1981).
Fluents represent the pairwise temporal relationships be-
tween propositions with temporal extent. Figure 1 shows
the six basic fluent relationships. Armed with the ability
to represent these relationships, a robot could represent the
event of moving forward and then hitting a wall using, e.g.,
the fluent relationshipES, representingmoving forwardas
ending at the same timecontactwith a wall begins.

Figure 1: Six base fluent relationships.

In this paper we propose a template for structured tem-
poral reasoning in Bayesian networks. Two techniques are
proposed which incorporate increased abstraction of tem-
poral sequence and making temporal relationships explicit
through the use of fluent relations.

The rest of this paper is organized as follows. The remain-
der of this section briefly describes Dynamic Bayesian Net-
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works (DBNs) (Dean & Kanazawa 1989), the current popu-
lar approach to handling time in Bayes belief networks. Sec-
tions and present two temporal abstractions for Bayesian
networks. The first allows for efficient and descriptive com-
bination of temporal data at multiple levels of granularity.
The second represents the more abstract fluent relations. In
Section , illustrative examples of the usage of these two tem-
poral abstractions are presented. Finally, related work and
future directions are discussed in Sections and , includ-
ing our use of this method in our Bayesian blackboard sys-
tem, AIID (Architecture for the Interpretation of Intelligence
Data).

Time in Dynamic Bayes Networks
A DBN represents a system as a sequence of snapshots, from
timest1−tN . Each snapshot consists of a complete network
structure representing the state of the system at that time (see
Figure 2). Causal links are added between the nodes of se-
quential timesteps, representing the sequential relationship
from tk to tk+1. Dynamic Bayes networks were first uti-
lized by Dean and Kanazawa (Dean & Kanazawa 1989) and
Nicholson (Nicholson & J.M. 1992). A significant discus-
sion of DBNs and robotic motion planning is given in (Dean
& Wellman 1991).

Figure 2: A generic Dynamic Bayes Network

In practice, most DBN implementations assume for the
sake of efficiency that the Markov property holds for the
domain they represent. This means that representing a sin-
gle snapshot in the past is sufficient for predicting future
outcomes. By making this assumption, all of the nodes in
the past may be ”rolled up” into a single network of nodes
which are connected forward to the network representing the
”present.” This can lead to a significant reduction in over-all
network complexity and subsequent performance enhance-
ment.

In problem domains where the granularity of temporal
representation is constant throughout, the above approach
to representation makes sense. However, when granularity
of time varies throughout and we wish to represent variables
whose states depend on different time scales, some network
nodes may be repeated redundantly in numerous instanta-
neous networks. Consider an example of a signal process-
ing task in which a signal is sensed at regular intervals, but
whose interpretation is based on a significantly longer du-
ration. In traditional DBNs, the node representing this in-
terpretation is replicated in each instantiation of the network
representing one time slice. This redundant replication of
the node slows down computation, complicates reasoning in
the network and makes human interpretation of the networks
difficult.

DBNs also restrict knowledge engineering. There is no
way in a DBN to represent the concept ”A starts with B but
ends before B ends.” In fact there is really no way to repre-
sent as simple a concept as ”A comes before B” in such a
way that another node can be causally related to that state-
ment.

These limitations of DBNs pose two problems to be
solved. Networks need to be able to represent time at dif-
ferent levels of granularity and abstract temporal relation-
ships should be easily expressible in the Bayesian belief net-
work framework. Fortunately, providing for different levels
of temporal granularity in Bayes nets facilitates the incorpo-
ration of abstract temporal relationships.

The following section describes how hierarchical Bayes
networks can be used to provide different levels of temporal
granularity. Section shows how abstract temporal relation-
ships, in this case fluents, can be incorporated into a Bayes
network. Examples of such networks are presented in Sec-
tion .

Reasoning over multiple levels of temporal
granularity

Imagine an autonomous agent exploring an environment
while attempting to avoid obstacles. It receives sonar inputs
every fifth of a second and front bump sensor indications
once each second. The agent would like to perform reason-
ing about its collisions with obstacles. Obviously the agent
can not perform this reasoning more frequently than once a
second. Thus the agent has two levels of temporal granu-
larity it needs to reason over. Traditional DBN techniques
would resolve this difference in granularity by replicating
the same bump sensor value across five different nodes in
the dynamic Bayes network (figure 4). The solution we pro-
pose incorporates all five sensor values (and their related net-
works) into the causes of a single node at the larger granu-
larity.

Hierarchical Bayes Networks

Hierarchical Bayes networks (Koller & Pfeffer 1997) have
been proposed as a method of incorporating a Bayes net-
work ”inside” a node in another Bayes network. In practice
this means that the only point of causal contact between two
sub-networks is a small subset of the nodes shared by both
sub-networks. The advantage of this technique is both in
computational speed, since the number of possible combi-
nations of outcomes to examine is reduced, and knowledge
engineering, since such encapsulation facilitates the hierar-
chical decomposition of concepts. We adopt this approach
by using a single node at a coarse temporal granularity to
encapsulate a number of finer grained temporal nodes.

Building temporal abstractions

To incorporate fine grained information at a coarse time
scale we add a single node at that coarse scale. This node
is linked into the network as the cause of the finer grained
nodes. Each link represents the probability of the finer
grained node given the coarse one (P (ntfine

|ntcoarse
).



Figure 3: An example of the temporal hierarchical network.

It can be seen in Figure 3 that if the coarse node is used
only as a cause on the coarse scale, itd-seperates the finer
grained information from anything on the coarser scale. In
the figure, the temporal nodes in the light grey box ared-
separated from the rest of the network (dark gray box) by the
black temporal abstraction node. This separation means that
inferences about network state ”above” that coarse-grained
node need only consider the state of that node, not the finer-
grained nodes associated with it. This restriction is not nec-
essary from a theoretical stand-point, but it allows for infer-
ence algorithms to run more efficiently on the network. This
process of temporal abstraction is not limited to just two lev-
els of temporal granularity; the same process can be repeated
to abstract an arbitrary number of different temporal granu-
larities to a single level.

Conditional probability tables in hierarchical networks
Once the network structure illustrated in Figure 3 has been
constructed, it is necessary to fill in the conditional proba-
bility tables for each of the nodes at the finer temporal grain,
ntf

. We need a functionf which calculates the probability
of each fine grained nodentf

given the value of the coarse
grained nodentc

, e.g.P (ntf
|ntc

). For our purposes we will
definef as follows:

f(ntf
= j, ntc

= k) = 1 − α, j = k

= α, j 6= k

This function models a fine grained temporal sensor which
makes an erroneous observation with probabilityα. As an
example of this model, imagine that we know a robot is
pressing against an object for some temporal extentt′; the
probability of some instantaneous sensor observation within
t′ returning false isα, the probability of the sensor mal-
functioning. Likewise, if the robot isnot pressing against
an object for some temporal extentt′′, then the probability
of an instantaneous observation at some time withint′′ re-
turning true is the sameα (assuming that malfunctions are
uniformly distributed between false positives and false neg-
atives). Note that this conditional probability function as-
sumes thatntf

has discrete values. The case of continuous
valued nodes is significantly more complex since the seman-
tics of the temporally abstracting node are less clear. It might
be the average continuous value over its temporal extent, or
any other arbitrary function. As a result of these complexi-
ties (and the fact that our temporal calculus, fluents, is con-

structed over boolean values) we assume our temporal nodes
have discrete values.

Adding Fluents to Bayes Networks
As described earlier, fluents are a set of pairwise relation-
ships between predicates whose values have temporal ex-
tent. Or, equivalently, they are a set of pairwise relation-
ships between the starts and ends of changes in truth value
of boolean variables. To incorporate fluents into Bayesian
networks we re-represent the sequence of instantaneous rep-
resentations of boolean variables by turning them into tem-
poral distributions over the time interval during which the
variable was true. After this transformation, we link these
start and end nodes as (potential) causes of a particular flu-
ent. The following two sections describe this process in
more detail.

Adding Start and End Nodes
Start and end nodes are added in much the same way as
the temporal-granularity-abstracting nodes described in Sec-
tion . However, instead of a node abstracting to a coarser
level of temporal granularity, a single node, with a distri-
bution over the time for which a boolean variable becomes
or stops being true is added to the network. This node is
linked into the network as a cause of the instantaneous true
or false values across time slices. Given this topology, we
can specify the conditional probability table of each instan-
taneous true or false node as follows. Given a particular start
time t, the probability of the node at timet being true is 1.0,
and the probability of nodet + n is 1.0 − Kn whereK is
the probability that a node will switch from true to false.
For performance reasons when building the network, start
and end nodes should only be connected to instantaneous
nodes at points in time when it seems likely that a start or
end might occur. In hand crafted networks this would be the
task of a knowledge engineer, alternatively, automated meth-
ods, such a leading or trailing edge detector could search for
such boundaries and place start and end nodes.

Introducing Fluents
Now that we have a way to abstract instantaneous time to
starting and ending nodes of an interval, these starts and
ends can be utilized for higher level reasoning. Fluents,
introduced in Section , give us a complete specification of
the temporal relationships between beginnings and ends of
event episodes (in this case, change in boolean variable
truth values). Given two pairs of event beginnings and end-
ings it is easy to give the probability of a particular flu-
ent relationshipF existing between the two events A, B.
P (F (A,B)|Start(A), End(A), Start(B), End(B)) is 1.0
when the fluent relation holds for the two events and 0.0 oth-
erwise.

Examples
In the following sections we present two examples of tem-
poral abstractions, building from time-slice representation to
representation of time intervals, and then to representation
of relations between intervals. In these examples, we again



consider an autonomous mobile agent attempting to reason
about events in its environment, including the outcomes of
its own actions. This agent is equipped with two sensors,
A and B. Sensor A reports true when the agent is getting
closer to an obstacle. Sensor B is a bump sensor which re-
ports true when it is in contact with an obstacle. Sensor A
reports at 5hz and sensor B reports at 1hz. The first example
illustrates reasoning about information with different tem-
poral granularity. The second example builds on the first
example, describing how fluents might then be incorporated
to promote more sophisticated reasoning about temporal re-
lations. In both cases the agent is reasoning about whether
or not it is approaching and subsequently colliding with an
obstacle (e.g., a wall).

Hierarchical temporal abstraction example
Using a traditional DBN, each time tick at the finest granu-
larity (in this case 5hz) would instantiate a separate copy of
the reasoning network, causally linked to the immediately
previous network. Such a network is shown in Figure 4. Us-
ing the hierarchical representation described above, a net-
work would instead be instantiated which looks like Fig-
ure 5.

Figure 4: The dynamic Bayse network for example 1

Figure 5: The multiple temporal granularity network for ex-
ample 1

Comparing the networks
As can be seen in Figures 4 & 5, the new formulation for ab-
stracting time results in a more intuitive network structure:
information contributing to distance is encapsulated and sep-
arated from information about the object’s identity. Intuitive
structure facilitates network engineering and analysis.

Our abstraction results in a faster network evaluation as
well. To evaluate the speed of the networks we used an

Network Structure Construct J-Tree Query J-Tree
D.B.N. 388.9 23.0
Temporal Abstraction 194.2 15.5

Table 1: Junction tree run times for DBNs and Hierarchical
Temporal Abstraction

implementation of the junction tree algorithm (Lauritzen &
Spiegelhalter 1988). The DBN we used was one in which
the Markovian assumption had been used to roll up the net-
work so that the DBN contained only two instances of the
network; current and past. As mentioned above, this the pre-
ferred usage of DBNs since it speeds querying significantly.
For our hierarchical temporal abstraction we used the net-
work in Figure 5. The results of this performance compari-
son are reported in Table 1. The results consist of averages of
ten runs of construction and querying. It can be seen that our
hierarchical temporal abstraction significantly outperforms
the DBN in the construction of the junction tree and slightly
outperforms the DBN in querying. It seems likely that the
faster performance of the hierarchical temporal abstraction
network is due to its simpler network structure and smaller
conditional probability tables. In particular, the abstracting
node for distance is able tod-separate the fine-grained sam-
ples from the rest of the network, which speeds inference.

The performance gains described above are even more
significant because the DBN is required to perform the roll-
up step at each tick of the finer temporal granularity, while
our temporal abstraction only needs to query when the high-
level probability is needed by the network’s user not purely
for proper maintenance of the priors in the network. In sit-
uations where the sampling rate of the sensors is quite fast,
DBNs simply could not perform the roll-up step in real-time
while the temporal abstractions presented would be able to
keep up.

This first example illustrates both the increased clarity in
knowledge engineering of temporal abstraction as well as
the performance benefits in querying that the resulting net-
work structure provides. We now turn to incorporating rep-
resentation of temporal relations between sensor streams.

Fluents Example

The following example illustrates the use of fluents as a tem-
poral abstraction in Bayes nets. Again consider an agent
determining if it has moved forward resulting in a collision
with an obstacle. In this case, however, the agent will use
fluents to represent the temporal relationship between its
distance and bump sensor. A fluent representing this be-
havior is given in Figure 6. The fluent is represented as
SAEW(Closer,Bump) (whereSAEWis short-hand for Starts
After Ends With; see Figure 1).

We can begin to build our Bayes net by rep-
resenting the probability that the agent running into
an obstacle will lead to the fluent represented above
(P (SAEW(Closer,Bump)|ApproachCollision)). This de-
scribes the network fragment given in Figure 7.

Given this network, we estimate the probabil-



Figure 6: SAEWfluent relationship between Closer and
Bump

Figure 7: Initial Bayes network

ity of the fluent given particular starting and ending
times of the two predicates; Closer and Bump (e.g.
P (CloserStarts|SAEW(Closer,Bump)). This leads to the
network in Figure 8.

Figure 8: Interim Bayes network

To complete the network we need to ground it in instan-
taneous predicates. Using the same hierarchical temporal
abstraction method in the first example, a starting or end-
ing distribution for a particular predicate implies a proba-
bility for a particular observation at a moment in time, e.g.
P (Closert|CloserStarts, CloserEnds). Thus the final
network constructed is seen in Figure 9.

Although the network depicted in Figure 9 is slightly
larger than that shown in the first example (fig. 5), it can
be seen that in this network the concept of approaching-to-
collision is not parameterized by a time step. The network
is no longer simply estimating the probability of approach-
to-collision at a particular moment, but rather the probabil-
ity that an approach-to-collision has occurred at all in the
agent’s history. Once it has been determined that such an
event has occurred, the probabilistic contributions of the var-
ious nodes can be analyzed to determine the precise time
frame in which it occurred.

Related Work
There have been many different efforts to integrate tempo-
ral reasoning in a Bayesian network framework. The re-
lationship to dynamic Bayes networks has been discussed
earlier in great detail. In addition, Berzuni (Berzuni 1990)
proposed adding a number of individual nodes representing
each temporal interval of interest as a random variable. Like
the placement of start and end nodes discussed above, the
placement of these temporal intervals must be carefully reg-
ulated or else it can significantly increase the size of the net-

Figure 9: Complete Bayes network

work. Tawfik and Neufeld (Tawfik & Neufeld 1994) instead
present a formulation where the conditional probability ta-
bles of nodes are defined as functions over time. Such a
formulation requires exogenous knowledge of how the prob-
abilities decay over time. For complex conditional probabil-
ity tables such a function may be quite difficult to describe.
Additionally it requires the network to keep track of each
node’s value over time and the time at which any particular
observation is made. Santos and Young (Santos & Young
1999) propose extending the structure of belief networks
to include time so that each node carries a value for a set
of proscribed intervals and the arcs between nodes contain
temporal extenent. However they do not present a technique
for inference in their extended networks which severely lim-
its their usefulness in this context. All of these techniques
concern themselves with defined intervals, either discrete or
continous, none of them allow for the reasoning about se-
quence without specific temporal values.

Many people have done work on reasoning with fluents or
other forms of temporal logic. Work has also been done on
unsupervised algorithms to learn fluents from time series of
boolean data (Cohen 2001; Cohen & Burns 2002).

Also related is work in object-oriented or hierarchical
Bayesian networks (Koller & Pfeffer 1997) which form
the basis for the construction of the time abstracting sub-
networks for reasoning at different levels of temporal gran-
ularity.

Future Work
We are currently developing these approaches to represent-
ing time to incorporate temporal reasoning in a Bayesian
blackboard system calledAIID: an Architecture for the In-
terpretation of Intelligence Data. AIID composes smaller
Bayesian network fragments, under the control of black-
board knowledge sources, to incrementally construct a com-
plete belief network on the blackboard.

This paper presents our preliminary investigations, and
we plan to expand these methods in a number of directions.
First, fluent relationships are just one form of temporal ab-
straction and there are others which could be incorporated in
a Bayesian network framework. Having multiple represen-
tations available is useful for our blackboard system (e.g.,
as independent knowledge sources), but more generally, it
provides a knowledge engineer with a toolbox of temporal
abstractions to use. Second, we are interested in extending
network construction algorithms to autonomously identify



appropriate situations for hierarchical abstraction and flu-
ent relation construction. Finally, as discussed above, the
technique for performing abstraction over multiple temporal
granularities is limited to discrete valued nodes. The estima-
tion of the conditional probability of fine grained continuous
nodes given a continuous coarse grained parent should be
explored further since in many cases continuous representa-
tions may be more appropriate.

Conclusions
Two complementary techniques for incorporating time into
Bayesian networks have been presented. Initial results in-
dicate that the techniques result in simpler, more compre-
hensible networks. They constitute a progression of increas-
ingly sophisticated representations of time, from time-slice
snapshots, to intervals, to fluent relationships, while remain-
ing within the principled framework of Bayesian belief net-
works.
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